Pain Control in Palliative Care
Patient Oriented Evidence that Matters

Compiled by: Sonia Ross
Dr Trevor Walker
David Woods

Reviewed by: Professor Rod MacLeod
Dr Carol McAllum

bpacnz Clinical Advisory Group:
Judi Dennis
Marama Parore Katene
Dr Peter Moodie
Associate Professor Jim Reid
Dr David Reith
Professor Murray Tilyard

Developed by bpacnz
Level 8, 10 George Street
PO Box 6032
Dunedin
Phone 03 477 5418
Fax 03 477 2622
www.bpac.org.nz

© bpacnz October 2005

Cover adapted from an original work by Simon Kaan
www.simonkaan.co.nz
All information is intended for use by competent health care professionals and should be utilised in conjunction with pertinent clinical data.
Key messages

- Adopt a systematic whole person approach to total pain assessment and management.
- Administer regular analgesia in accordance with the WHO analgesic ladder.
- Use appropriate adjuvant therapies as specifically indicated at any time during the illness.
- Liaise with the Palliative Care team as soon as it becomes apparent that this will be advisable at some time during the illness.
- Maintain involvement with the patient throughout their illness.

Professor Rod MacLeod

We asked Rod, New Zealand’s first professor of palliative care, what lessons for primary care he had learned on his journey from rural practice in East Anglia to his present day work at the North Shore Hospice. His reply was that he had come to understand that for patients receiving palliative care, maintaining relationships and continuing normal daily activities are just as important, if not more so, than symptom control. This understanding is the cornerstone of successful palliative care.

Both palliative care and primary care are about people and their families, listening to them and learning what is most meaningful in their lives. Primary care clinicians have the advantage over those who work solely in palliative care of being able to build up high levels of expertise about their individual patients through years of shared experiences and mutual trust.

For patients receiving palliative care, maintaining relationships and continuing normal daily activities are just as important, if not more so, than symptom control. This understanding is the cornerstone of successful palliative care.
Rod feels that general practitioners and others working in primary care often underestimate both how much they know about their patients and the importance of their role in caring for people receiving palliative care. He is not just talking about peoples’ physical wellbeing and how they respond to ill health but the context of their lives and what is most meaningful to them. The sadness is that when people are admitted to a hospice or hospital this expertise is often no longer available to guide patient care.

Approximately 90% of palliative care takes place in the home and there is a growing body of evidence that people who are cared for at home by a team that includes the patient’s own general practitioner achieve good outcomes with significantly reduced hospital admissions. The key attributes to making this work are communication, competence and confidence.

Communication with patients is what general practitioners are good at; communication with other health professionals can be more problematic. Often busy-ness gets in the way. Rod hopes that Primary Health Organisations will be a catalyst to improvement by putting systems in place that allow primary care clinicians dedicated time to communicate and collaborate with other health professionals.

Competence in controlling the common symptoms associated with palliative care is not difficult to achieve for most situations. Uncomplicated approaches to the physical aspects of pain, dyspnoea and nausea are usually successful but management of the fear and distress that often accompanies them needs a more intimate and individualised approach.

Confidence grows with knowledge and the experience of working alongside other members of the primary and palliative care teams. The early establishment of working relationships and pathways will ensure clinicians are not left isolated and can readily obtain advice when they need it.

These attributes enable primary care clinicians to improve the quality of life of people receiving palliative care by helping them to maintain relationships and continue with normal daily activities as well as achieving good symptom control.
Pain in palliative care

Palliative care involves assessing and managing pain that may:

- be chronic,
- have multiple aetiologies, one or more of which are incurable,
- impair function,
- threaten independence, and
- invoke fear of further suffering and death.

Pain will trouble over half of patients with advanced cancer, AIDS, cardiac disease or neurological disorders. However, pain is not inevitable in these diseases. Approximately 30% of patients with advanced cancer will not get pain, 80% of those who do can achieve good pain relief by the systematic use of oral analgesia, appropriate adjuvant therapies and multi-faceted supportive strategies. The aim is to optimise quality of life right up to the moment of death.

The aim is to optimise quality of life right up to the moment of death.

Pain assessment in palliative care

A whole person approach to pain assessment can be assisted by considering four components of the pain experience:

- the stimuli that cause it,
- the mind’s perception of these stimuli,
- the person’s interpretation of these unpleasant sensations, and
- the impairments they produce.
The column on the left of figure one summarises the factors that contribute to the components of pain. All four components require careful assessment to determine the most appropriate interventions, or method of pain control.

Heavy reliance on analgesics without the use of other appropriate interventions may produce pain relief at the cost of significant loss of quality of life.

Painful stimuli

Accurate identification of sources of painful stimuli guides the choice of adjuvant therapies. These are pharmacological or non-pharmacological interventions that relieve pain but are not analgesics. However people with advanced disease often have more than one pain and some may mask others. For example it has been estimated that 50% of patients with cancer will have three or more pains (Twycross, 1996).
Therefore all of the following areas need consideration when searching for sources of painful stimuli even when the source seems immediately obvious:

- Primary disease related (e.g. bone metastases, liver distension in heart failure)
- Complications of the primary disease (e.g. peptic ulcer, pulmonary embolus)
- Related to general debilitation (e.g. muscular pains from minor trauma to wasted muscles)
- Pre-existing or other diseases (e.g. osteoarthritis, toothache)
- Therapy related (e.g. constipation from opioids, tissue inflammation from radiotherapy).

Table 1: Causes of pain in patients with cancer
(Adapted from Cavalieri, 2005)

<table>
<thead>
<tr>
<th>Pain due to direct effects of the cancer (70 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ infiltration</td>
</tr>
<tr>
<td>Bone</td>
</tr>
<tr>
<td>Nerves</td>
</tr>
<tr>
<td>Viscera</td>
</tr>
<tr>
<td>Liver</td>
</tr>
<tr>
<td>Soft tissue</td>
</tr>
<tr>
<td>Remote effects</td>
</tr>
<tr>
<td>Neuropathies</td>
</tr>
<tr>
<td>Myopathies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pain syndromes from cancer therapy (25%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
</tr>
<tr>
<td>Fibrosis</td>
</tr>
<tr>
<td>Neuropathy</td>
</tr>
<tr>
<td>Lymphoedema</td>
</tr>
<tr>
<td>Surgery</td>
</tr>
<tr>
<td>Incision pain</td>
</tr>
<tr>
<td>Phantom pain</td>
</tr>
<tr>
<td>Chemotherapy</td>
</tr>
<tr>
<td>Neuropathies</td>
</tr>
<tr>
<td>Necrosis</td>
</tr>
<tr>
<td>Polyarthritis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pain unrelated to cancer (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low back problems</td>
</tr>
<tr>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
</tr>
<tr>
<td>Spinal stenosis</td>
</tr>
<tr>
<td>Unknown cause</td>
</tr>
</tbody>
</table>
Pain relief in palliative care is most commonly given to those with cancer. Table 1 summarises the causes of pain in patients with cancer.

About two thirds of patients with cancer will experience pain at some stage of the disease (SIGN, 2000). The prevalence depends on the stage of the disease and the type of malignancy. Of patients undergoing treatment for cancer, 30 - 40% will have pain and this will increase to 70 - 90% of patients with advanced disease (Foley, 2000).

Although a quarter of pains are therapy related, most of these are directly related to the intervention and of short duration, for example the pain associated with surgical procedures.

Identifying the sources of painful stimuli

Clinicians need to draw on all their learning and experience to identify the source of painful stimuli. Here are some simple reminders that may be useful.

- Pain of acute onset or sudden exacerbation is a palliative care emergency. It may represent a wide range of conditions that are amenable to prompt treatment such as GI perforation, fracture, bleeding into a solid organ or spinal cord compression. However, the confirmation of a diagnosis should not delay the provision of effective analgesia.

- Well localized pain is likely to be somatic in origin. This may be arising from cutaneous or musculo-skeletal tissues. The deeper the tissue the duller the pain is likely to be. Remember however, that irritation of the peritoneum or pleura will produce well-localized sharp pain even though the original site of inflammation may be the abdominal or thoracic viscera (e.g. pulmonary embolus).

- Poorly localized, deep pain may be visceral in origin. This is often from inflammation, distension, compression or infiltration of abdominal or thoracic viscera or spasm in hollow organs.

- Maintain a high index of suspicion for neuropathic pain. Neuropathic mechanisms are involved in about 40% of cancer pain syndromes (Caraceni, 1999). The pain may be disease related (for example infiltration or compression of nerve tissue by tumour mass) or therapy related (for example post-surgery neuropathy or chemotherapy induced polyneuropathy).

Neuropathic pain is commonly described as burning, cold, numb, or stabbing, in the distribution of a peripheral nerve or nerve root. It may be accompanied by paraesthesia, hypersensitivity or allodynia (pain on light touch). Involvement of the sympathetic system is indicated by a vascular distribution of the pain accompanied by localised pallor, flushing and/or disturbances of sweating.
Pain perception

Many of the drugs used in the analgesic ladder (discussed later) have their major action on modifying pain perception. Complementary therapies such as acupuncture may also help with pain perception and, although many of these have no scientific basis, in palliative care it is the outcome for an individual patient that is important.

Pain is a subjective experience with a wide range of individual differences in pain perception. This is due, in part, to genetically determined variations in pain sensitivity (Diatchenko, 2005). However, interneuronal influences and the modulating effect of endogenous opioids also contribute to pain perception.

This physiological modulation is influenced by a patient’s mood and morale and their general health and resilience. As these are often low in people with advanced disease they can be particularly vulnerable to pain. Additional interventions (pharmacological and non-pharmacological) aimed at improving mood, morale, general health and personal resilience also decrease sensitivity to pain.

Evaluation of these contributing factors is an essential component of pain assessment. Effective interventions in these areas can make major contributions to pain control. The wide range of appropriate interventions is not always the preserve of the clinician. Spiritual, cultural, social, familial and whānau based strategies are often more important.

The effectiveness of interventions for pain control can only be evaluated by measuring the severity of the pain. The subjective nature of pain means that only the patient can do this.

‘How do you rate the severity of the pain on a scale of 1 to 10, with 10 being the worst pain you could ever have?’

Probably the simplest and most useful method of measuring pain severity is a verbal rating scale. Ask ‘How do you rate the severity of the pain on a scale of 1 to 10 with 10 being the worst pain you could ever have?’ and write down the response. This scale is only suitable for temporal comparisons of pain severity for single patients. It is not suitable for comparing pain between patients.
Pain interpretation

In the higher centres pain interpretation is influenced by prior experiences, knowledge, and cultural values, etc. People attempt to put the pain into a framework they can understand and that gives their suffering some meaning. This interpretation is often influenced by misconceptions and results in unrealistic fears and expectations that add to suffering. Assessment of pain interpretation hinges on good therapeutic relationships and honest but tactful discussions.

Open questions are essential. A useful question is ‘What does this pain mean to you?’ This may highlight misconceptions such as ‘the cancer is about to burst’ or ‘death is near.’ It may lead to a spiritual or metaphysical discussion or maybe something very practical but important to the patient ‘It means I cannot sit at the table with the rest of the family at meal times.’

‘What does this pain mean to you?’

Impairment that accompanies ongoing pain

Often a focus for a patient and their family is planning and preparing for death. This may be important but should not overshadow planning for life. Optimising quality of life up until the moment of death is the main focus of palliative care.

Ongoing pain often impairs relationships and the ability to continue the normal activities of daily life. It can distort a person’s sense of self. For example back pain may restrict a patient to their bed and isolate them from the rest of the family. Moving the bed into the living room could allow the patient to remain an active family member. Unless the clinician asks good open questions this part of the suffering of pain may never be revealed. A good open question is ‘What is the worst thing about the pain?’

‘What is the worst thing about the pain?’

By identifying impairments and working with patients, family, whanau and other members of the caring team to overcome them, clinicians can help patients to regain control of their lives and optimise the quality of their remaining days.
Strategies for total pain management

A thorough assessment of pain in palliative care enables the development of strategies to control the pain and optimise quality of life. These may include:

- Regular analgesic administration according to the WHO analgesic ladder.
- Use of appropriate pharmacological and non-pharmacological adjuvant therapies.
- A wide range of strategies to improve mood, morale, general health and resilience.
- Open discussions arising from strong therapeutic relationships to assist in appropriate pain interpretation.
- Multi-faceted interventions to overcome impairment to relationships, normal activities of daily life, the sense of self and physical capability.

This POEM focuses on the pharmacological strategies most useful for primary care.

The WHO analgesic ladder

The WHO analgesic ladder (Figure 2) is a schema to guide symptomatic pain relief. Up to 88% of cancer patients will receive adequate pain relief from implementation of this ladder (SIGN, 2000).

![WHO analgesic ladder](image)

General principals

- Analgesics should be given regularly, usually by mouth.
- If one drug on a step does not provide pain control, move up a step rather than trying another drug on the same step.
- Use adjuvant therapy for specific indications on any step of the ladder.
STEP 1
Non-opioid (e.g. paracetamol)
± adjuvant (e.g. amitriptyline for neuropathic pain)

A non-opioid is used for analgesia on the first step of the ladder. This is usually paracetamol at a dose of 1 g every 6 hours. If it is not effective at this dose move to step two.

An alternative to paracetamol on step one is a non-steroidal anti-inflammatory drug (NSAID). The choice of drug is based on a risk/benefit assessment for each individual (bpacnz, 2004). NSAIDs are particularly indicated for bone pain and may be taken as an adjuvant therapy on any step of the ladder. Patients receiving NSAIDs who are at risk of gastrointestinal side-effects will receive some protection from the addition of omeprazole 20mg once daily half an hour before breakfast with a glass of water (SIGN, 2000).

Other adjuvant therapies (pharmacological or non-pharmacological) may also be indicated at any time during step one.

STEP 2
Weak opioid (e.g. codeine)
+ step one analgesic
± adjuvant

For step two a weak opioid such as codeine is added to the analgesic used in step one. This usually means adding codeine to the regular paracetamol already being taken. However compound paracetamol and codeine preparations are not recommended as the amount of codeine is too small. The recommended dose of codeine is 30 - 60 mg every four hours up to a maximum of 240 mg daily. Codeine has a ceiling analgesic dose of 240 mg daily; dose-related adverse effects continue to worsen if this dose is exceeded. Therefore in most situations there is no benefit in taking codeine at doses greater than 60mg four times a day.

Most of the action of codeine is dependent on hepatic metabolism which converts it to morphine by CYP2D6. Up to 10% of the population have deficiencies in this enzyme and respond poorly or not at all to codeine.

An alternative to codeine on step two is dihydrocodeine (DHC Continus, fully subsidised on the Pharmaceutical Schedule) available as controlled release tablets; maximum dose 120 mg twice daily.

Tramadol has opioid like actions and is effective in moderate pain but can cause troublesome nausea and occasionally CNS excitation. Tramadol is not currently subsidised on the Pharmaceutical Schedule

The combination of dextropropoxyphene plus paracetamol (e.g. Paradex) is not generally recommended as the individual components have different durations of action. However in practice some patients do appear to respond well to this combination.

If pain is not controlled with codeine at maximum doses do not switch to dihydrocodeine (or vica versa); move onto step 3 of the analgesic ladder
STEP 3 Strong-opioid (e.g. morphine)
+ non-opioid
± adjuvant

Morphine is the first choice for moderate to severe pain because of its availability, cost, and the body of experience in its use. Morphine is combined with the non-opioid used in step one plus any indicated adjuvant therapies. Alternative opioids for moderate to severe pain are oxycodone, fentanyl and methadone.

Starting oral morphine

Morphine is started with morphine elixir or *normal release tablets (RA Morph solution or Sevredol tablets). Effective pain control is achieved by giving the morphine regularly (four hourly) without waiting for the previous dose to wear off.

- For an adult who no longer has pain control on the regular weak opioid used in step two an appropriate starting dose is 5 mg every four hours. The weak opioid is stopped when the morphine is started.

- In patients who are not currently taking an opioid (opioid naïve) the dose is normally reduced to 2.5 - 5 mg every four hours.

- Elderly or very cachectic patients or those with renal impairment, also usually start with 2.5 mg every four hours.

Constipation is inevitable with morphine use. Starting a laxative at the same time as the morphine reduces future problems with faecal impaction. A combination stimulant plus softener laxative is recommended.

Starting a laxative at the same time as the morphine avoids future problems with faecal impaction.

Nausea and drowsiness also commonly occur at the commencement of morphine use. However these are usually transient and settle within one week. Some clinicians prefer to combine the first week of morphine treatment with an antiemetic (see later). Patients should be advised not to drive for one week after starting morphine or after increasing the dose.

*Normal release” is the same as “immediate release” referred to in some texts.
Morphine titration

The dose of morphine is titrated slowly upwards to achieve effective pain control. There is no upper dose for morphine use unless the patient suffers from distressing and uncontrollable adverse effects. Pain perception is reviewed regularly with the aid of the verbal rating scale and if needed the dose is increased by 30 - 50% every four hours. The incremental percentage decreases as the dose increases. As there is no maximum dose of morphine the dose can be increased, if tolerated, as long as stronger analgesia is required.

Switching to slow release morphine

Switching to slow release (long acting) morphine involves using the same daily dose as is needed to achieve good pain control with normal release morphine. For example a person achieving good pain control with 20mg of normal release morphine every four hours is taking 120mg of morphine per day. They will need 60mg of slow release morphine every 12 hours. Two slow release preparations are available fully subsidised on the Pharmaceutical schedule; LA Morph and m-Eslon long acting. A range of capsule and tablet strengths are available.

Opioid tolerance and dependence

‘If I am on morphine now what happens when the pain gets worse?’

Patients and caregivers may be concerned about opioid addiction (psychological dependence) and loss of effectiveness over time (tolerance). These potential barriers to effective pain relief are not justified. Patients on opioids for cancer pain do not become addicted in the same way that addicts become addicted to heroin.

Withdrawal symptoms may be experienced if doses are missed for any reason but this is a normal physiological process to chronic opioid use for pain and is not related to addiction. The need for increased doses for pain relief usually relates to a change in the disease process (rather than tolerance). Patients and caregivers can be reassured that increased opioid doses are available and will be effective if pain worsens.
Breakthrough and incident pain

Breakthrough pain is pain which “breaks through” the base level of analgesia. This can occur during dose titration or when pain is normally controlled by slow release morphine. In both cases rescue doses of normal release morphine are required. If doses of normal release morphine are required consistently they are incorporated into the long acting, twice daily dose.

Incident pain is pain on movement or activity (e.g. movement of a fractured limb, hiccups). If the action or movement stops the pain stops. Doses of normal release morphine can be given when the aggravating event occurs or before any activity that is known to bring on the pain. When morphine is given regularly for this type of pain there is a high risk of adverse effects due to the possibility of excessive doses and because the duration of action of morphine exceeds the duration of the activity-related pain. Management needs to be decided on a case-by-case basis. Doses for incident pain are not added to the total daily dose of slow release morphine.

Rescue doses of normal release morphine should be available for all patients for the treatment of breakthrough or incident pain. However the patient needs to be warned to avoid repeated doses for incident pain, because of the concerns discussed in the previous paragraph. The dose is the same as that needed for a four hourly dose of normal release morphine (Twycross, 2002).

For example, for a patient taking 240mg of slow release morphine per day (e.g. 120 mg twice daily) the rescue dose for breakthrough pain is 40mg. If there is no response, the dose can be repeated after one hour. The next regular dose is taken at the normal time without waiting for the rescue dose to wear off.

When a rescue dose is taken for breakthrough pain, the next regular dose is given at the normal time.

Management of opioid induced adverse effects

Constipation is inevitable and persistent with opioid use

Constipation with opioids is inevitable and persistent. It is recommended that a combination laxative with both stool softening and stimulant properties is taken regularly as soon as opioid medication is started. Codalax (danthron and poloxamer) is a stimulant laxative with a lubricant and faecal softener which is indicated and funded for opioid induced constipation in terminally ill patients. Laxsol (docusate and senna) is an alternative softener plus stimulant which is also fully subsidised. The dose of laxative should be titrated to maintain the patient’s normal pattern of bowel opening.
Nausea and vomiting usually resolve within a few days

Up to two-thirds of patients experience nausea and/or vomiting at the start of treatment with morphine (Hanks et al, 2001). This usually resolves within a few days and can be covered by an antiemetic for the first week of treatment. If it continues it may be due to a mixture of drug induced and pathological causes. A search for a remedial cause should be made; otherwise an antiemetic can be continued. Suitable antiemetic drugs and doses include:

- Haloperidol, 0.5 - 1.5 mg at night is an appropriate first choice.
- Metoclopramide is particularly useful if gastric stasis is a factor. Start with 10 mg three times daily and increase if necessary. However it can increase pain if intestinal colic is present such as in bowel obstruction. Avoid metoclopramide in this situation.
- Cyclizine, 25 - 50 mg three times daily, is particularly useful if symptoms are aggravated by movement or the nausea/vomiting is of central nervous system origin (for example brain tumour).

Effects on cognitive function

These are usually minimal for patients on stable doses of morphine. Patients just starting morphine or who have had a dose increase should be warned that sedation and drowsiness can occur. They should avoid driving for the first week after starting treatment or increasing the dose.

Opioid Toxicity

Classic signs of opioid toxicity include pinpoint pupils, hallucinations, drowsiness, vomiting, respiratory depression, confusion and myoclonic jerks. This can occur when:

- Doses are increased too rapidly.
- Renal impairment is present.
- A patient is poorly responsive to opioids and high doses are used in an attempt to get a response.
- An adjuvant pain relieving intervention such as chemotherapy or radiotherapy has recently occurred and has given pain relief, and the baseline morphine has not been reduced.

If toxicity occurs the opioid should be stopped and one or more regular doses omitted. When signs of toxicity have subsided, the opioid may be recommenced at a lower dose or an alternative opioid given at a lower equivalent dose. If the opioid is morphine and there is mild renal impairment - stop the slow release morphine and when the toxic signs and symptoms are reducing, introduce normal release morphine at longer intervals than the usual four hours.

Morphine toxicity can be reduced more quickly if the patient is hydrated for example by giving 1 litre of normal saline subcutaneously over 12 hours. The delirium symptoms of toxicity may be treated with haloperidol while the toxicity is resolving.
Respiratory depression

Serious respiratory depression is unlikely unless very excessive doses of morphine have been given. If it is life-threatening the opioid antagonist naloxone can be given at a dose of 20 μg every two minutes until the respiratory rate is satisfactory. Naloxone is short acting so it is important to observe the patient and, if necessary, give further doses every 30 - 60 minutes. Giving naloxone may significantly increase a patient’s pain. If the naloxone is titrated against respiratory rate and level of consciousness an acute pain crisis is unlikely.

Alternative opioids

There is limited evidence for the effectiveness of switching opioids in the management of cancer pain (Quigley, 2004). However, an alternative opioid to morphine may be indicated in situations such as morphine intolerance, severe renal impairment, difficulties with oral administration and poor analgesic response. When the dose of 24 hour oral morphine approaches 500mg, consider discussing with a palliative care specialist. If a switch from morphine to another opioid is indicated, inpatient unit admission is usually advisable.

Methadone

Methadone has similar analgesic efficacy to morphine, and can be used if the side effects of morphine are not tolerated. It has a long half-life, complex and variable pharmacokinetics and can accumulate on repeated dosing. However, it is a safer alternative to morphine in renal failure (Davis, 2005). The prescribing and doses of methadone in palliative care differ from those in other disciplines of medicine. In addition it has a number of significant drug interactions and is usually administered under specialist guidance.

Oxycodone

Oxycodone is a step 3 opioid and is available in controlled release (Oxycontin) and immediate release capsule (Oxynorm) formulations. Both preparations are fully subsidised on the Pharmaceutical Schedule but are more expensive than oral morphine and should be considered as second line therapy. Oxycodone has a high oral bioavailability and is about 1.5 to 2 times as potent as oral morphine. It can generally be used without toxic effects in patients with renal failure. Patients who are being switched from oral morphine should initially receive half the dose of oral oxycodone (10 mg oral oxycodone is equivalent to 20 mg oral morphine).

Fentanyl

Fentanyl is a synthetic opioid which is available as a transdermal patch (Durogesic). This allows controlled delivery of the drug for up to 72 hours. Transdermal fentanyl is potentially useful if the patient has experienced intolerable adverse effects to morphine or is unable to take oral analgesia. Whilst effective in treating cancer pain, the fentanyl patch is a less flexible dose form than oral morphine and it should only be used in patients with stable opioid requirements. The onset of action is 12 - 24 hours so most patients will require oral morphine for breakthrough pain when switching.
The duration of action is about 72 hours in most patients and a degree of analgesia/adverse effects will continue for 12 - 24 hours after removal of the patch.

Durogesic is fully subsidised on the Pharmaceutical Schedule on special authority application. Initial application can only be made by a relevant specialist and needs to meet the following criteria: Patient is terminally ill and opioid responsive; and either, is unable to take oral medication, or is intolerant to morphine or morphine is contraindicated.

Table 2: Equivalent doses of oral morphine and fentanyl patches

<table>
<thead>
<tr>
<th>Morphine dose (mg/24hours)</th>
<th>Fentanyl patch (µg/hour)</th>
<th>Morphine dose (mg/24hours)</th>
<th>Fentanyl patch (µg/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 135</td>
<td>25</td>
<td>585 - 674</td>
<td>175</td>
</tr>
<tr>
<td>135 - 224</td>
<td>50</td>
<td>675 - 764</td>
<td>200</td>
</tr>
<tr>
<td>225 - 314</td>
<td>75</td>
<td>765 - 854</td>
<td>225</td>
</tr>
<tr>
<td>315 - 404</td>
<td>100</td>
<td>855 - 944</td>
<td>250</td>
</tr>
<tr>
<td>405 - 494</td>
<td>125</td>
<td>945 - 1034</td>
<td>275</td>
</tr>
<tr>
<td>495 - 584</td>
<td>150</td>
<td>1035 - 1124</td>
<td>300</td>
</tr>
</tbody>
</table>

Fentanyl 25 µg/hour is approximately equivalent to 120mg per day of oral morphine. This is likely to be too strong for the opioid naïve patient and lead to opioid toxicity.

Pethidine is not used in palliative care

Pethidine is a synthetic opioid drug. It has a short duration of action (2-3 hours) and is unsuitable for the management of severe chronic pain. A metabolite, nor-pethidine, is renally excreted and can accumulate in renal impairment and cause myoclonus, tremor and seizures. There is no place for the use of pethidine in palliative care.
Adjuvant therapies

Adjuvant therapies are used for specific indications at any stage for pain and symptom relief in palliative care. They include radiotherapy, chemotherapy, surgery and a range of drugs which are familiar to clinicians for other indications. Many of these therapies are the preserve of specialists.

Table 3: Adjuvant therapies

<table>
<thead>
<tr>
<th>Indication</th>
<th>Comment</th>
<th>Possible treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone pain</td>
<td>From tumour or metastases. X-ray all to exclude fractures that may require surgical fixation</td>
<td>NSAIDs, Biphosphonates, Steroids, Radiotherapy, Surgical fixation of mechanical instability</td>
</tr>
<tr>
<td>Bowel or ureteric colic</td>
<td>All causes. Stop prokinetics and stimulant laxatives.</td>
<td>Surgery, Stents, Steroids, Hyoscine butylbromide</td>
</tr>
<tr>
<td>Cerebral metastases</td>
<td></td>
<td>Dexamethasone, Radiotherapy, Surgery</td>
</tr>
<tr>
<td>Constipation</td>
<td>Opioids</td>
<td>Combined stimulant /faecal softener, Rectal emptying</td>
</tr>
<tr>
<td>Gastric distension pain</td>
<td>Obstruction or direct tumour effect</td>
<td>Antacids, Prokinetics (e.g. metoclopramide, domperidone), Surgery</td>
</tr>
<tr>
<td>Hepatic capsular pain</td>
<td>Liver enlargement</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>Muscle spasm</td>
<td>Infiltration</td>
<td>Muscle relaxants (eg diazepam), LA into trigger points, Heat, massage etc</td>
</tr>
<tr>
<td>Nerve compression</td>
<td>All causes</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>Neuropathic pain</td>
<td>See below</td>
<td>TCAs, antiepileptic drugs, gabapentin</td>
</tr>
<tr>
<td>Skin tenderness</td>
<td>May progress to ulcer</td>
<td>Gentle massage, Cushioning</td>
</tr>
<tr>
<td>Spinal cord compression</td>
<td>This is an emergency</td>
<td>Radiotherapy, Steroids, Surgery</td>
</tr>
<tr>
<td>Tenesmus</td>
<td>Involvement of rectal muscles</td>
<td>Dexamethasone</td>
</tr>
</tbody>
</table>
Neuropathic Pain

Opioids are effective, or partially effective, in some types of neuropathic pain but their efficacy is often less than optimal (Caraceni, 2004) and adjuvant therapies may be required in combination with the opioid. The most commonly used are tricyclic antidepressants (TCAs) and antiepileptic drugs. There is no significant difference between these two classes of drugs either in their effectiveness or overall incidence of adverse effects (SIGN, 2000). For both drug classes, the NNT for a 50% reduction in pain ranges from 2 to 4 and the number needed to produce substantial harm (NNH) is between 20 and 30 (Davis MP et al, 2005). The initial choice is determined by relative contraindications, possible drug interactions and risk of adverse effects for individual patients. There is little evidence to support the use of SSRIs for neuropathic pain. Nerve blocks may be useful.

TCAs

In practice TCAs are better tolerated than antiepileptics and they are often preferred for superficial burning pain (Denton, 2005). They are usually effective at low doses but may aggravate opioid induced constipation. Amitriptyline is widely used but nortriptyline has fewer anticholinergic adverse effects (dry mouth, constipation, drowsiness) and has a lower potential to cause postural hypotension.

Antiepileptics

Carbamazepine, sodium valproate or clonazepam are the most commonly used antiepileptics for neuropathic pain and may be more effective for shooting or stabbing pain than for burning pain. Gabapentin has been shown to be effective in cancer pain when added to opioids and is generally well tolerated (Caraceni A et al, 2004). It is fully funded on the Pharmaceutical Schedule on special authority. Application can be made by a vocationally trained GP when both a TCA and antiepileptic have been ineffective or not tolerated.

A TCA and an antiepileptic can be used in combination but additive adverse effects may occur. If combination therapy is used introduce one drug at a time. The combination of a TCA and antiepileptic drug may increase drowsiness.

Mexiletine (an antiarrhythmic agent) is not routinely used as an adjuvant therapy because of a high incidence of adverse effects (SIGN, 2000).
Suggested doses for neuropathic pain

- Amitriptyline. The starting dose of amitriptyline is 10 mg at night increasing to 50 - 75 mg at night and an effect is usually seen within 7 days.

- Nortriptyline. The dose of nortriptyline is 10 - 50 mg nocte with a similar onset of action to amitriptyline.

- Sodium Valproate. 200 mg BD increased every few days according to response. Usual maintenance dose is 400-1200 mg daily in divided doses. May be better tolerated than carbamazepine.

- Carbamazepine. Start with 100 mg daily and titrate by 100-200 mg every two weeks. Usual maintenance dose is 200 mg three or four times daily. Carbamazepine has many drug interactions and toxicity can be increased by concurrent treatment with drugs that inhibit the CYP3A4 enzyme, e.g. azole antifungals, erythromycin, cimetidine, fluoxetine, diltiazem. For more information on drug interactions check the appropriate reference sources.

- Clonazepam. 0.5 - 2 mg daily. Titrate dose slowly: 1-2 mg a day is usually adequate (Palliative Care Handbook, 2004). May cause drowsiness and ataxia. There is little evidence to support effectiveness but it may be useful for nocturnal pain. Clonazepam is also useful for morphine induced myoclonus.

- Gabapentin. Start with 300 mg three times daily and titrate if necessary, according to response, up to a maximum of 3,600 mg daily. Some guidelines advise starting with a lower dose of 100 mg three times daily and titrating more slowly (Prodigy; pain guidelines, 2005). For many patients the effective dose is between 900-1,800 mg daily (Prodigy; pain guidelines, 2005).

Corticosteroids

Corticosteroids are useful in several types of cancer pain. They reduce oedema and inflammation, and thus the pressure associated with some tumours, by inhibiting prostaglandin production. They have complex central effects and can elevate mood, appetite and general well-being. Conversely, depression, mood swings, and psychosis can occur. Proximal myopathy is also a significant adverse effect in this group of patients.
Some of the main indications for the use of corticosteroids as adjuvant therapy (with suggested doses) are as follows; (adapted from: Woodruff, 2004).

Table 4. Indications for the use of corticosteroids as adjuvant therapies

<table>
<thead>
<tr>
<th>Indication</th>
<th>Dexamethasone dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>General wellbeing</td>
<td></td>
</tr>
<tr>
<td>Appetite stimulation</td>
<td>2-4 mg daily</td>
</tr>
<tr>
<td>Increase sense of wellbeing</td>
<td></td>
</tr>
<tr>
<td>Anti-emetic</td>
<td></td>
</tr>
<tr>
<td>Neurological</td>
<td></td>
</tr>
<tr>
<td>Raised intracranial pressure</td>
<td>Up to 16mg daily</td>
</tr>
<tr>
<td>Cerebral tumours</td>
<td>Up to 16mg daily</td>
</tr>
<tr>
<td>Spinal cord compression</td>
<td>Up to 16mg daily</td>
</tr>
<tr>
<td>Nerve compression or infiltration</td>
<td>4-8mg daily</td>
</tr>
<tr>
<td>Capsular stretching</td>
<td></td>
</tr>
<tr>
<td>Liver metastases</td>
<td>4-8 mg daily</td>
</tr>
<tr>
<td>Other visceral metastases</td>
<td>4-8 mg daily</td>
</tr>
<tr>
<td>Soft tissue infiltration</td>
<td></td>
</tr>
<tr>
<td>Head and neck tumours</td>
<td>4-8 mg daily</td>
</tr>
<tr>
<td>Abdominal and pelvic tumours</td>
<td>4-8 mg daily</td>
</tr>
<tr>
<td>Tenesmus</td>
<td></td>
</tr>
<tr>
<td>Rectal pain due to invasive tumour</td>
<td>4-8mg daily</td>
</tr>
</tbody>
</table>

Dose equivalents:

Dexamethasone 0.75 mg = Prednisone 5 mg = Methylprednisolone 4 mg

The evidence for actual doses of steroids is poor and often it is a matter of local practice and opinion. It is helpful to clearly document the indications and plan for steroids when first introduced. They can often be down-titrated while symptom control is maintained.

Corticosteroids should be used for as short a time as possible. Review effectiveness after one or two weeks and reduce or stop if the effect is not significant. If they are used for appetite stimulation or an improvement in wellbeing then a short course of two weeks may be preferable to continued treatment.

Dexamethasone doses higher than 16 mg/day are sometimes used in short bursts for acute symptom control.

Prednisone 10 - 20 mg daily can be used to increase appetite and improve feeling of wellbeing.

Methylprednisone is preferred to dexamethasone in some centres as the incidence of some side effects (e.g. mood disturbances) is lower.
Other symptoms

Dyspnoea

Patients receiving palliative care are often distressed by dyspnoea. This may be related to the primary disease or a concurrent illness. Identification of the underlying cause, that may be eminently treatable, allows appropriate therapy. Examples of some treatable causes of dyspnoea are given below;

<table>
<thead>
<tr>
<th>Cause of dyspnoea</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaemia</td>
<td>Transfusion</td>
</tr>
<tr>
<td>Congestive Heart failure</td>
<td>Diuretic, ACE inhibitor</td>
</tr>
<tr>
<td>Chronic Obstructive Airways Disease</td>
<td>Bronchodilator</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>Paracentesis, corticosteroid</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>Aspiration, pleurodesis</td>
</tr>
<tr>
<td>Anxiety</td>
<td>Reassurance, breathing exercises, benzodiazepines</td>
</tr>
<tr>
<td>Superior vena caval obstruction</td>
<td>Corticosteroid, radiotherapy</td>
</tr>
</tbody>
</table>

Simple non-specific measures can also produce relief. These include; sitting upright in bed, oxygen (if hypoxia has been confirmed), controlled breathing techniques and the management of anxiety (Prodigy; dyspnoea,2004).

Although morphine in high doses can cause respiratory depression, low doses can improve dyspnoea, probably by reducing inappropriate and excessive respiratory drive. The dose of morphine is titrated to response at much lower doses and with smaller incremental changes than for pain control.

- For patients who are not already receiving opioids 2.5 mg morphine every four hours is a suitable starting dose (Davis, 1997).
- If a patient has already been taking a weak opioid e.g. codeine, a dose of 5-10mg regularly every 4 hours and as required is more appropriate (Prodigy; dyspnoea,2004).
- If the patient is already on regular morphine for pain control increase the dose of regular morphine by 30 - 50 % every 2 - 3 days until symptoms are controlled or adverse effects prevent further dose increases (Twycross et al, 2002).

Nebulised morphine has also been used for dyspnoea but there is no consensus on dose, regimen and place in therapy and it can cause bronchospasm (Davis, 1997).

Benzodiazepines may be useful even if anxiety is not apparent as they have calming and muscle relaxant properties. Low doses do not cause significant respiratory depression but patient monitoring is prudent especially if they are also on opioids. Appropriate doses are diazepam 5 mg or lorazepam 0.5 - 1 mg by mouth. Sublingual lorazepam is useful if a rapid effect is required.
Cough

Cough may be associated with dyspnoea and settle when the dyspnoea is treated or it may occur independently. Treatable causes should always be sought and managed in the usual way. Symptomatic management is guided by if the cough is dry or productive.

A dry cough due to malignancy can usually be managed with a cough suppressant unless dyspnoea is a feature. Suitable doses are:

- Pholcodine. An initial dose of 30 mg (loading dose) followed by 5 - 10 mg four times a daily. The initial loading dose is recommended because of pholcodine’s long half life.
- Oral morphine. At 2.5 mg every four hours, increasing up to 20 mg if needed will usually suppress cough in patients who are not already taking morphine.
- Methadone. This may be useful at low doses of 2 mg three times daily for patients already taking morphine (Denton, 2004).
- Codeine. Doses ranging from 15 - 30 mg 8 hourly to 60 mg 6 hourly have been recommended (Regnard & Hockley, 2004).

If an uncontrolled dry cough is due to a tumour a trial of dexamethasone at a dose of 6 - 8 mg/daily may be beneficial (Prodigy; cough, 2004).

A productive cough may require a trial of several approaches such as:

- an expectorant,
- nebulised saline to loosen mucus, or
- physiotherapy to aid cough and expectoration.
- Cough suppressants are generally avoided with productive coughs but may be useful to aid sleep or when a patient is dying or too weak to cough.
- Adding an antimuscarinic (e.g. Hyoscine hydrobromide) may help to reduce retained secretions.

Constipation

Constipation is very common in patients with advanced cancer due to the side effects of drugs, such as opioids and antimuscarinics, loss of appetite, immobility, poor fluid intake and disease involvement in the GI tract. It can lead to nausea and vomiting, abdominal discomfort and overflow diarrhoea. Prophylactic laxatives (stimulant plus softener) are recommended for all patients prescribed opioids or other drugs that may cause constipation. Rectal treatments may be required for patients with faecal impaction and hard stools should be treated with a softener before purgatives are given (Fallon, 1997).
Hiccups

The most common cause of hiccups is gastric distension but they can also be caused by brain tumour, uraemia, phrenic nerve irritation or infection. Intermittent hiccups can often be treated by non-drug therapy such as vagal/pharyngeal stimulation or rebreathing from a paper bag (Prodigy, hiccups, 2002). If hiccups are prolonged and distressing pharmacological treatment may be required. Several medications are available.

- Haloperidol and chlorpromazine are both effective and may cause central suppression of the hiccup reflex.
 - Haloperidol 1.5 mg PO TID. If hiccups are not relieved the dose can be increased by 1.5 mg each day to a maximum of 9 mg daily (Clark, 2004).
 - Chlorpromazine 25 mg PO TID. If hiccups are not relieved the dose can be increased by 25 mg each day to a maximum of 200 mg daily (Clark, 2004).

- Metoclopramide for reduction of gastric stasis or distention. Dose; 10 mg Q8H (Clark, 2004).

- Nifedipine or baclofen for muscle relaxation.

- An antiepileptic (e.g. sodium valproate or carbamazepine) can be tried if the hiccups are due to intracranial disease.

Retained secretions (death rattle)

This occurs when weakness prevents the patient from clearing respiratory secretions. The noisy breathing and bubbling sounds can be distressing to family and friends so it is very important to explain the situation and reassure them. If treatment is necessary, options include:

- Repositioning the patient
- Exclusion of pulmonary oedema or treatment with a diuretic
- Administration of an antimuscarinic:
 - Hyoscine hydrobromide is effective as a single subcutaneous dose of 400 µg. Review the response after 30 minutes. If effective, continue, using 1.2 mg as a continuous 24 hour subcutaneous infusion. (Prodigy, respiratory 2004).
 - Hyoscine butylbromide (Buscopan) is more freely available, has a shorter duration of action and causes less sedation than the hydrobromide. The dose is 20 mg as a single subcutaneous injection. Review the response after 30 minutes. If effective, continue, using 60-120 mg as a continuous 24 hour subcutaneous infusion. (Prodigy, respiratory, 2004).
Xerostomia and stomatitis

Xerostomia is often reported in patients with advanced cancer. It may be drug induced. In most cases severity of dry mouth is dose related and drug effects are additive. Alternatively it may be secondary to dehydration, mouth breathing, radiotherapy, anxiety, renal failure or infection (especially *Candida*). Stomatitis has similar causes and is exacerbated by reduced immunity and some chemotherapeutic drugs.

<table>
<thead>
<tr>
<th>Drugs that may cause dry mouth include;</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Morphine (often overlooked)</td>
</tr>
<tr>
<td>- Tricyclic antidepressants (amitriptyline, imipramine, nortriptyline)</td>
</tr>
<tr>
<td>- Antihistamines</td>
</tr>
<tr>
<td>- Antipsychotics (e.g. haloperidol, chlorpromazine)</td>
</tr>
<tr>
<td>- Antiemetics (e.g. cyclizine)</td>
</tr>
<tr>
<td>- Antiepileptics (carbamazepine, sodium valproate)</td>
</tr>
<tr>
<td>- Beta-blockers</td>
</tr>
<tr>
<td>- Diuretics</td>
</tr>
</tbody>
</table>

Routine mouth care and oral hygiene is important in all patients to prevent the development of oral problems. This includes removal of debris from the oral mucosa, teeth or dentures and rinsing the mouth regularly with water or normal saline (Regnard & Hockley, 2004). Water or normal saline is safe, soothing and can be given as frequently as required. Warming or cooling as required may increase the soothing effect. Only use antimicrobial mouthwashes if specifically indicated or if the patient is at risk of a secondary infection.

Routine mouth care and oral hygiene is important in all patients to prevent the development of oral problems

If possible, identify and treat the underlying cause of the dry mouth. For example change drug therapy or reduce the dose if possible, manage dehydration and anxiety. For symptomatic treatment of dry mouth simple measures are advised such as frequent sips or sprays of cold water, sucking ice cubes or boiled sweets and applying lip balm to prevent drying and cracking (Prodigy, 2004). Salivary stimulants such as lime juice, fresh melon or pineapple are also useful (Palliative Care Handbook, 2004).
Pruritus

This can be difficult to treat and may be caused or aggravated by malignancy, renal failure or hyperbilirubinaemia. Pain and itch often involve common pathways, for example cholestatic and uraemic itch are mediated via opioid receptors. Morphine and other opioid analgesics can also contribute to pruritus by causing peripheral release of histamine. Other causes include endocrine disease, iron deficiency, drug allergy and lymphoma (Palliative Care Handbook, 2004).

Treatment includes (Palliative Care Handbook, 2004)

- Identifying and treating or removing the underlying cause.
- Application of surface cooling agents (e.g. 0.25-1% menthol in aqueous cream), tepid showers, humid environment.
- Using a soap substitute, e.g. emulsifying ointment.
- Oral antihistamine, e.g. cetirizine or promethazine.
- Bile sequestrant if indicated, e.g. Cholestyramine 6-8 g daily.
- Doxepin.
- Rifampicin for chronic cholestasis.
- Anxiolytics e.g. benzodiazepines.
- H2 antagonists (act on histamine receptors in the skin), e.g. cimetidine 400 mg daily.
- If pruritus is associated with obstructive jaundice the best intervention is stenting the biliary tract.

Referral to a dermatologist may be indicated in difficult cases.
Syringe drivers in palliative care

Administration of drugs via syringe drivers is complex due the possibility of incompatibilities between drugs and diluents and the variety of administration devices available. If possible it is advisable to obtain specialist advice. The following is a brief overview.

A syringe driver is a battery driven device that delivers drugs, usually subcutaneously, over a selected time period. The main indications for subcutaneous infusion are;

- Nausea and vomiting not controlled with oral medication
- Bowel obstruction (because absorption by the oral route is impaired)
- Inability to take drugs orally (reduced level of consciousness, dysphagia, tracheoesophageal fistula)

Continuous subcutaneous infusions often contain a mixture of drugs, e.g. morphine plus antiemetic(s). The dose of each drug should be individualised and fixed dose cocktails are not recommended.

Table 5: Drugs commonly used in syringe drivers.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Usual Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>Pain</td>
<td>One third to half of total daily oral dose</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>Nausea and vomiting Confusion and delirium</td>
<td>1 - 2 mg over 24 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 - 15 mg over 24 hours</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Usual steroid indications</td>
<td>4 - 16 mg over 24 hours</td>
</tr>
<tr>
<td>Metoclopramide</td>
<td>Nausea and vomiting</td>
<td>30 - 60 mg over 24 hours</td>
</tr>
<tr>
<td>Methotrimeprazine</td>
<td>Nausea and vomiting</td>
<td>6.25 - 25 mg over 24 hours</td>
</tr>
<tr>
<td>(Levomepromazine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclizine</td>
<td>Nausea and vomiting</td>
<td>75 - 150 mg over 24 hours</td>
</tr>
<tr>
<td>Midazolam</td>
<td>Restlessness, agitation, confusion and acute distress NB alone does not treat delirium.</td>
<td>10 - 60 mg over 24 hours</td>
</tr>
<tr>
<td>Hyoscine butylbromide</td>
<td>Intestinal colic associated with bowel obstruction Secretions</td>
<td>60 - 180 mg over 24 hours</td>
</tr>
<tr>
<td>Hyoscine hydrobromide</td>
<td>Excessive secretions</td>
<td>0.4 - 2.4 mg over 24 hours</td>
</tr>
</tbody>
</table>

*Adapted from Basic Practice Updates; Palliative Care by Anne Denton. NZ College of Pharmacists

Incompatibilities (e.g. precipitation, particle formation, chemical inactivation) can occur between drugs and also with diluents used to make up the infusion. The incompatibility is not always detectable by visual inspection. In most cases sterile water as the diluent is preferable to normal saline. For advice on diluents, administration and the compatibility of multi-drug combinations contact your local hospice or hospital pharmacy department.
Useful resources

For a list of Hospices in New Zealand see http://www.hospice.org.nz/list.html

Current learning in palliative care (CLIP) tutorials
http://www.helpthehospices.org.uk/elearning/intro.htm

The IAHPC Manual of Palliative Care 2nd Edition

Control of pain in patients with cancer. SIGN Guidelines; Available from;

National Cancer Institute. Pain. Available from;
http://www.cancer.gov/cancertopics/pdq/supportivecare/pain/HealthProfessional/page1
(Accessed, October, 2005)

Bibliography (articles of general interest)

References:

bpacnz, 2004. POEM. Towards safer use of NSAIDS.

Davis CL. ABC of Palliative Care: breathlessness cough and other respiratory problems. BMJ 1997; 315:931-34.

IASP (International Association for the Study of Pain); Available from;

Prodigy; Palliative care, cough guidance, 2004. Available from;

Prodigy; Palliative care, dyspnoea guidance, 2004. Available from;

Prodigy; Respiratory Secretions Guidance, 2004. Available from;

SIGN, 2000. Control of pain in patients with cancer. SIGN Guidelines; Available from;
